Non-rigid Face Tracking with Local Appearance Consistency Constraint.

نویسندگان

  • Yang Wang
  • Simon Lucey
  • Jeffrey F Cohn
  • Jason Saragih
چکیده

In this paper we present a new discriminative approach to achieve consistent and efficient tracking of non-rigid object motion, such as facial expressions. By utilizing both spatial and temporal appearance coherence at the patch level, the proposed approach can reduce ambiguity and increase accuracy. Recent research demonstrates that feature based approaches, such as constrained local models (CLMs), can achieve good performance in non-rigid object alignment/tracking using local region descriptors and a non-rigid shape prior. However, the matching performance of the learned generic patch experts is susceptible to local appearance ambiguity. Since there is no motion continuity constraint between neighboring frames of the same sequence, the resultant object alignment might not be consistent from frame to frame and the motion field is not temporally smooth. In this paper, we extend the CLM method into the spatio-temporal domain by enforcing the appearance consistency constraint of each local patch between neighboring frames. More importantly, we show that the global warp update can be optimized jointly in an efficient manner using convex quadratic fitting. Finally, we demonstrate that our approach receives improved performance for the task of non-rigid facial motion tracking on the videos of clinical patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Number : Title : Non - Rigid Face Tracking with Enforced Convexity and Local Appearance Consistency

Convex quadratic fitting (CQF) has demonstrated great success recently in the task of non-rigidly registering a face in a still image using a constrained local model (CLM). A CLM is a commonly used model for non-rigid object registration and contains two components: (i) local patch-experts that model the appearance of each landmark in the object, and (ii) a global shape prior describing how eac...

متن کامل

Non-rigid face tracking with enforced convexity and local appearance consistency constraint

20 21 22 23 24 25 26 27 28 29 Article history: Received 2 March 2009 Received in revised form 6 August 2009 Accepted 22 September 2009 Available online xxxx

متن کامل

Efficient constrained local model fitting for non-rigid face alignment

Active appearance models (AAMs) have demonstrated great utility when being employed for non-rigid face alignment/tracking. The "simultaneous" algorithm for fitting an AAM achieves good non-rigid face registration performance, but has poor real time performance (2-3 fps). The "project-out" algorithm for fitting an AAM achieves faster than real time performance (> 200 fps) but suffers from poor g...

متن کامل

Simultaneous Tracking of Rigid Head Motion and Non-rigid Facial Animation by Analyzing Local Features Statistically

A quick and reliable model-based head motion tracking scheme is presented. In this approach, rigid head motion and non-rigid facial animation are robustly tracked simultaneously by statistically analyzing the local regions of several representative facial features. The features are defined and operated based on a mesh model that helps maintain a global constraint on the local features and avoid...

متن کامل

Rigid and non-rigid face motion tracking by aligning texture maps and stereo 3D models

Accurate rigid and non-rigid tracking of faces is a challenging task in computer vision. Recently, appearance-based 3D face tracking methods have been proposed. These methods can successfully tackle the image variability and drift problems. However, they may fail to provide accurate out-of-plane face motions since they are not very sensitive to out-of-plane motion variations. In this paper, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Image and vision computing

دوره 28 5  شماره 

صفحات  -

تاریخ انتشار 2010